
867

Dialogues that Account for Different Perspectives in
Collaborative Argumentation

Elizabeth Black
Department of Engineering Science

University of Oxford, UK
lizblack@robots.ox.ac.uk

Katie Atkinson
Department of Computer Science

University of Liverpool, UK
katie@liverpool.ac.uk

ABSTRACT
It is often the case that agents within a system have distinct types
of knowledge. Furthermore, whilst common goals may be agreed
upon, the particular representations of the individual agents’ views
of the world that they operate within may not always match. In this
paper we provide a framework to allow different agents with differ-
ent expertise to make individual contributions to an overall reason-
ing process, in order to make a decision about how to act to achieve
some goal. Our framework is based on a model of argumentation
that embeds inquiry dialogues within a process of practical reason-
ing. We combine two different approaches to argumentative rea-
soning and show not only how they can function together within a
formal framework to provide richer interactions, but also how this
facilitates reasoning across distributed agents who may each have
different perspectives on the scenarios they operate in.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: [Multiagent systems]

Keywords
dialogue, argumentation, inquiry, persuasion, action

1. INTRODUCTION
In this paper we present a dialogue framework that allows agents

with different spheres of expertise to inquire about the beliefs of
others and to share specialist knowledge about the effect of actions.
This allows them all to contribute to the decision of how to act to
achieve some goal, despite their heterogeneous views of the world.
We use an argumentation model that allows defeasible reasoning
about what to believe, and a different argumentation model that al-
lows defeasible reasoning about what to do (both defined in Section
2). In Section 3 of the paper we present the dialogue framework,
which allows the agents not only to combine these two argumenta-
tion models but also allows them each to collaborate within the ar-
gumentation process. In Section 4 we demonstrate how this frame-
work can be used, with an example based upon reasoning about the
medical treatment of a patient. Section 5 concludes the paper.

The main contribution here is the first formal framework for
multi-agent dialogues over actions which combines inquiry dia-
logue over beliefs with persuasion dialogue over actions. Although
Cite as: Dialogues that Account for Different Perspectives in Collabo-
rative Argumentation, Elizabeth Black and Katie Atkinson, Proc. of 8th
Int. Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–
15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

approaches to combining epistemic reasoning with practical rea-
soning exist [11, 12], these are focussed on argument-based se-
mantics and do not provide a dialogue framework that allows mul-
tiple agents to collaboratively reason in this manner. Our frame-
work guarantees that all knowledge relevant to both types of rea-
soning will be put forward during the dialogue. We do not require
the agents to be aware of or agree upon all information relevant
to the problem scenario: each agent has its own area of expertise
and its own perspective on the problem. Allowing this distribution
of knowledge significantly reduces the state space that each agent
has to search when constructing arguments. Pooling all knowledge
would be undesirable due to the increase in the state space. Also,
there may be privacy issues and the communication costs of pool-
ing the knowledge may be prohibitive.

2. ARGUMENTATION MODELS USED
Agents within our framework may contain epistemic knowledge

(beliefs) as well as normative knowledge about the effect of ac-
tions. We adapt García and Simari’s Defeasible Logic Program-
ming (DeLP) [7] for representing an agent’s beliefs. DeLP is a
formalism that combines logic programming with defeasible argu-
mentation. It allows an agent to reason with inconsistent and in-
complete knowledge that may change dynamically over time. Al-
though we do not present it here, DeLP provides a dialectical rea-
soning mechanism for deciding whether an argument is acceptable.
We assume that a proposition is a ground atom p and a literal is
either a proposition p or a strongly negated proposition ¬p. Unlike
in [7], we assume all knowledge to be defeasible.
Definition 1: A defeasible rule is denoted α1 ∧ . . . ∧ αn → α0

where αi is a literal for 0 ≤ i ≤ n. A defeasible fact is denoted
α where α is a literal. A belief is either a defeasible rule or a
defeasible fact. B denotes the set of all beliefs.

Each agent is identified by a unique id x taken from a set I. Each
agent has a, possibly inconsistent, belief base.
Definition 2: A belief base associated with an agent x is a finite
set of beliefs, denoted Σx.

We now slightly adapt the definition of a defeasible derivation
from [7] to deal with our assumption that all beliefs are defeasible.
Definition 3: Let Ψ be a set of beliefs and α a literal. A defeasible
derivation of α from Ψ, denoted Ψ |∼ α, is a finite sequence
α1, α2, . . . , αn of literals s.t.: αn is α; and each literal αm (1 ≤
m ≤ n) is in the sequence because either αm is a defeasible fact
in Ψ, or there exists a defeasible rule β1 ∧ . . .∧βj → αm in Ψ s.t.
every literal βi (1 ≤ i ≤ j) is an element αk preceding αm in the
sequence (k < m).

We now define a b-argument as being a minimally consistent set
of beliefs from which the claim can be defeasibly derived.

Cite as: Dialogues that Account for Different Perspectives in Collabora-
tive Argumentation, Elizabeth Black, Katie Atkinson, Proc. of 8th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009,
Budapest, Hungary, pp. 867–874
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

868

Definition 4: A b-argument constructed from a set of, possibly
inconsistent, beliefs Ψ is a tuple 〈Φ, φ〉 where φ is a defeasible fact
and Φ is a set of beliefs s.t.: Φ ⊆ Ψ; Φ |∼ φ; ∀φ, φ′ s.t. Φ |∼ φ

and Φ |∼ φ′, it is not the case that φ ∪ φ′ �⊥ (where � represents
classical implication); and there is no subset of Φ satisfying (1-3).
Φ is called the support of the b-argument and φ is called the claim.

We now describe the model of argumentation that we use to al-
low agents to reason about how to act. Although reasoning about
what to do has been examined in numerous different contexts within
the literature on multi-agent systems, it has recently received atten-
tion within argumentation-based accounts. In this paper we adapt
one such account that is based upon the representation of an ar-
gumentation scheme and critical questions for practical reasoning
as an action-based alternating transition system (AATS) [1]. Ar-
gumentation schemes are patterns of reasoning that, when instanti-
ated, provide presumptive justification for the particular conclusion
of the scheme [14]. Schemes are associated with a set of character-
istic critical questions (CQs) that can be used to identify challenges
to these justifications. The practical reasoning argument scheme
given in [1], which we make use of in this paper, is as follows:

In the current circumstances R, we should perform action A,
which will result in new circumstances S, which will realise goal
G, which will promote some value V.

This scheme makes use of what are termed ‘values’ to describe
some social interest that the agent wishes to uphold by realising the
goal stated [3]. Values are used as a mechanism to represent the
particular social interests of the agents in the system and they pro-
vide qualitative reasons as to why goals are desirable. So, an agent
may propose an action, plus justification for its performance, by in-
stantiating the scheme. However, the conclusion is a presumptive
argument so an agent who does not accept this argument may chal-
lenge elements in the instantiation, through the application of CQs.
An unfavourable answer to a CQ will identify a potential flaw in the
argument. For example, one of the CQs associated with the scheme
(CQ9) is ‘Does doing the action have a side effect which demotes
some other value?’. Through the CQs agents can attack the validity
of the various elements of the argument scheme and the connec-
tions between them, suggest alternative possible actions, and point
out side effects of the proposed action.

In order to be able to automate the reasoning embodied through
the use of such a scheme, it needs to be grounded within some
well-defined representation. In [1] such a formalism is presented to
describe this scheme for practical reasoning in terms of an Action-
based Alternating Transition System (AATS). AATSs are presented
in [15] as structures for modelling game-like, dynamic, multi-agent
systems in which the agents can perform actions in order to modify
and attempt to control the system in some way. These structures
serve as the basis for the representation of arguments about action
in [1]. The formalism presented there provides a well-specified ba-
sis for addressing the problems of practical reasoning as presump-
tive argumentation in a multi-agent context, extending the formal-
ism of [15] to enable the representation of values, where whether
a value is promoted or demoted by a given action is determined by
comparing the state reached with the state left.

Whilst the formalisms given in [1, 15] are intended to represent
the overall behaviour of a multi-agent system and the effects of
joint actions performed by the agents, we are interested in repre-
senting the specialist knowledge of the individual agents within
a system. Hence, we adapt their formalisms to define our Value-
based Transition System (VATS) as follows.
Definition 5: A VATS for an agent x, denoted Sx, is a 9-tuple

〈Qx, qx
0 , Acx, Avx, ρx, τx, Φx, πx, δx〉 s.t.:

Q is a finite set of states;
qx
0 ∈ Qx is the designated initial state;

Acx is a finite set of actions;
Avx is a finite set of values;
ρx : Acx �→ 2Qx

is an action precondition function, which for
each action a ∈ Acx defines the set of states ρ(a) from which a

may be executed;
τx : Qx×Acx �→ Qx is a partial system transition function, which
defines the state τx(q, a) that would result by the performance of
a from state q—note that, as this function is partial, not all actions
are possible in all states (cf. the precondition function above);
Φx is a finite set of atomic propositions;
πx : Qx �→ 2Φ

x

is an interpretation function, which gives the set
of primitive propositions satisfied in each state: if p ∈ πx(q), then
this means that the propositional variable p is satisfied (equiva-
lently, true) in state q; and
δx : Qx × Qx × Avx �→ {+,−, =} is a valuation function which
defines the status (promoted (+), demoted (−), or neutral (=)) of
a value v ∈ Avx ascribed by the agent to the transition between
two states: δx(q, q′, v) labels the transition between q and q′ with
respect to the value v ∈ Avx.
Note, Qx = ∅ ↔ Acx = ∅ ↔ Avx = ∅ ↔ Φx = ∅.

Given its VATS, an agent can now instantiate the practical rea-
soning argument scheme in order to construct arguments for and
against actions—called a-arguments.
Definition 6: An a-argument constructed by an agent x from its
VATS Sx is a 6-tuple A = 〈qx, a, qy, p, v, s〉 s.t.: qx = qx

0 ; a ∈
Acx; τx(qx, a) = qy; p ∈ πx(qy); v ∈ Avx; δx(qx, qy, v) = s

where s ∈ {+,−, =}.
We define the following functions: Action(A) = a; Goal(A) = p;
Value(A) = v; Polarity(A) = s.
If Polarity(A) = +(−resp.), then we say A is an a-argument for
(against resp.) action a to achieve goal p.

We now define arguments that instantiate CQs used to challenge
a-arguments. For the sake of space, we consider only a subset of
the CQs given in [1], being those we use in our example. We follow
the numbering of CQs used in [1].
Definition 7: A cq6-argument constructed from a VATS Sx is an
a-argument 〈qx, a, qy, p, v, +〉 constructed from Sx. It challenges
another a-argument 〈q′x, a′, q′y, p′, v′, +〉 (answering the question
‘Are there alternative ways of realising the same goal?’) iff a �= a′

and p = p′.
Definition 8: A cq9-argument constructed from a VATS Sx is a
5-tuple 〈qx, a, qy, v,−〉 s.t.: qx = qx

0 ; a ∈ Acx; τx(qx, a) =
qy; v ∈ Avx; δx(qx, qy, v) = −. It challenges an a-argument
〈q′x, a′, q′y, p′, v′, +〉 (answering the question ‘Does doing the ac-
tion have a side effect which demotes some other value?’) iff a =
a′ and v �= v′.
Definition 9: A cq10-argument constructed from a VATS Sx is
a 5-tuple 〈qx, a, qy, v, +〉 s.t.: qx = qx

0 ; a ∈ Acx; τx(qx, a) =
qy; v ∈ Avx; δx(qx, qy, v) = +. It challenges an a-argument
〈q′x, a′, q′y, p′, v′, +〉 (answering the question ‘Does doing the ac-
tion have a side effect which promotes some other value?’) iff
a = a′ and v �= v′.

We refer to a-, cq6-, cq9- and cq10-arguments collectively as act-
arguments. The set of all act-arguments that can be constructed by
an agent x with VATS Sx is denoted A(Sx).

In [1], details are given of how the reasoning with the argu-
ment scheme and CQs is split into three stages : problem formu-

Elizabeth Black, Katie Atkinson • Dialogues that Account for Diff erent Perspectives in Collaborative Argumentation

869

lation, where the agents decide upon the facts and values relevant
to the particular situation under consideration; epistemic reasoning,
where the agents determine the current situation with respect to the
structure formed at the previous stage; and, action selection where
the agents develop, and evaluate, arguments and counter arguments
about what to do by instantiating the argument scheme and CQs.
In [1] the authors demonstrate how agents, given their AATS rep-
resentations of a given scenario, can produce arguments to reveal
disagreements with other agents relevant to each of the three stages
of reasoning described. However, what has not been considered
previously is how within the epistemic reasoning stage the initial
state can be determined in a situation of ignorance. In the approach
that we describe here, we show how this can be determined through
the use of an inquiry dialogue in which agents exchange arguments
to establish what the state of the world is. The inquiry element
thus allows for richer reasoning that considers agents’ beliefs, in
addition to their arguments about how to act.

3. THE DIALOGUE FRAMEWORK
Our framework assumes a closed cooperative multi-agent sys-

tem. It allows an agent to take into account the various different
views of the world held by the other specialist agents when making
a decision about how to act in order to achieve a goal. In order to
do this, the agents participate in a persuasion over action (pAct) di-
alogue in which each agent asserts all the act-arguments that it can
construct which may be relevant to the decision. Once all such ar-
guments have been presented, the agent who initiated the dialogue
is able to use its own personal preference ordering over the values
represented to decide which action to perform to achieve its goal.

In order to use its VATS to construct arguments, a participant x

in a pAct dialogue must first establish what the current state (qx
0) is,

and so must determine the perceived truth value of each proposition
p in Φx. It does this by constructing b-arguments for and against
p and establishing whether such b-arguments are acceptable given
the argumentation semantics it is using. However, in order to take
full advantage of the various types of specialist knowledge avail-
able, the agent will construct such arguments and determine their
acceptability status collaboratively with the other agents. They do
this by entering into an inquiry sub-dialogue. This idea of shift-
ing between different dialogue types has been explored in general
terms (e.g. [9, 13]), here we give a specific protocol that allows
shifts between pAct and inquiry dialogues.

We define our dialogue in the style of a dialogue game. Dialogue
games are normally made up of a set of communicative acts called
moves, a set of rules stating which moves it is legal to make at any
point in a dialogue (the protocol), a set of rules defining the effect
of making a move, and a set of rules that determine when a dialogue
terminates (e.g. [9]). We use the general dialogue framework pre-
sented in [4], adapting it to allow for more than two participating
agents. In [4], a protocol is given for inquiry dialogues that allow
two agents to jointly construct b-arguments and determine their ac-
ceptability; here we provide a novel protocol for pAct dialogues
that allow embedded inquiry sub-dialogues. As in [4], we also pro-
vide a strategy, which allows an agent to select exactly one legal
move as the move to make.

We assume that there are always at least two agents (partici-
pants) taking part in a dialogue, each with its own identifier taken
from the set I. A move in our system is of the form 〈Ag, Act, Det〉.
Ag is the identifier of the agent who makes the move (the sender of
the move), Act is the type of move, and the Det gives the details of
the move. The format for moves used in pAct dialogues is shown
in Table 1, and the set of all moves meeting the format defined in
Table 1 is denoted M. Also, Sender : M �→ I is a function that

returns the sender of a move.
Making the move 〈x, open, dialogue(inq, Δ, Λ)〉 causes the par-

ticipants to enter into an inquiry sub-dialogue. We do not give the
details of an inquiry dialogue here but we assume that:
1. it fits with our upcoming definitions of the dialogue framework
and allows multiple participants;
2. the topic is the set of propositions Δ;
3. the dialogue is guaranteed to terminate;
4. the dialogue outcome is a set of b-arguments with claim either p

or ¬p where p ∈ Δ, such that a b-argument is part of the outcome
of the dialogue if and only if it is an acceptable b-argument when
reasoning with the union of the participating agents’ beliefs. (Al-
though we have presented a version of DeLP [7] as the argumen-
tation model for epistemic reasoning, any suitable argumentation
model could be substituted for this, allowing the use of different
argumentation semantics.)

We are not aware of any existing dialogue systems that exactly
fit our needs here. The one that most closely matches our require-
ments is given in [4], where a dialogue is defined for exactly two
participants that will return as outcome a single acceptable argu-
ment for a proposition that is its topic; we believe it is possible to
adapt this framework to meet our needs, as the difficult issues as-
sociated with multi-party dialogues (e.g. [5]) do not arise here due
to the collaborative and exhaustive nature of the dialogue.

Once an inquiry dialogue has terminated, the agent x who initi-
ated the dialogue must use the set of arguments for and against the
propositions in Δ to decide whether p ∈ πx(qx

0) for each p ∈ Δ.
We will assume here that the agent believes that p ∈ πx(qx

0) if
and only if there are n acceptable arguments for p and m accept-
able arguments against p and n > m. Note however that this is
a simplistic view and that, although it is beyond the scope of this
paper, this problem of argument aggregation is an ongoing topic of
interest within the community (e.g. [8, 10]).

As a dialogue progresses over time, we denote each timepoint by
a natural number. A dialogue is simply a sequence of moves, each
of which is made from one participant to all the other participants
(i.e. at each timepoint, the agent whose turn it is sends the same
move to every other participant of the dialogue). Agents may have
more than one turn in a row. Each move is indexed by the timepoint
when the move was made. The dialogue itself is indexed with two
timepoints, indexing the first and last moves of the dialogue.
Definition 10: A dialogue, denoted Dt

r , is a sequence of moves
of the form [mr, . . . , mt] involving n participants {x1, . . . , xn}
(2 ≤ n) s.t. {x1, . . . , xn} ⊆ I; for all 1 ≤ j, k ≤ n s.t. j �= k,
xj �= xk; r, t ∈ N; and the following conditions hold:
1. mr is of the form 〈xi,open, dialogue(θ, γ, [x1, . . . , xn])〉,
2. Sender(ms) ∈ {x1, . . . , xn} (r ≤ s ≤ t).
The type of the dialogue Dt

r is given by Type(Dt
r) = θ. The topic

of the dialogue Dt
r is given by Topic(Dt

r) = γ. The initiator of
the dialogue Dt

r is given by Initiator(Dt
r) = xi. The ordered

participants of the dialogue Dt
r is given by Participants(Dt

r) =
[x1, . . . , xn]. The set of all dialogues is denoted D.

The first move of a dialogue Dt
r must always be an open move

(condition 1 of the previous definition) that gives a list of the par-
ticipants which determines the order in which the agents take their
turn, and every move of the dialogue must be made from a partici-
pant of the dialogue (condition 2).

We now define some terminology that allows us to talk about the
relationship between two dialogues.
Definition 11: Let Dt

r and Dt1
r1

be two dialogues. Dt1
r1

is a sub-
dialogue of Dt

r iff Dt1
r1

is a sub-sequence of Dt
r (r < r1 ≤ t1 ≤ t).

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

870

Move Format
open 〈x, open, dialogue(θ, γ, Λ)〉
assert 〈x, assert, Ψ〉
close 〈x, close, dialogue(θ, γ, Λ)〉

Table 1: The format for moves used in pAct dialogues, where
either θ = pAct and γ is a proposition, or θ = inq and γ is
a set of propositions; Λ is a list of agents (Λ = [x1, . . . , xn],
{x1, . . . , nn} ⊆ I); Ψ is a set of act-arguments; and x is an
agent (x ∈ I).

Dt
r is a top-level dialogue iff r = 1. Dt

1 is a top-dialogue of Dt
r iff

either the sequence Dt
1 is the same as the sequence Dt

r or Dt
r is a

sub-dialogue of Dt
1. If Dt

r is a sequence of n moves, Dt2
r extends

Dt
r iff the first n moves of Dt2

r are the sequence Dt
r .

In order to terminate a dialogue with n participants, n close
moves must appear next to each other in the sequence (called a
matched-close).
Definition 12: Let Dt

r be a dialogue with participants {x1, . . . , xn}
s.t. Type(Dt

r) = θ, Topic(Dt
r) = γ and Participants(Dt

r) = Λ.
We say that ms (r < s ≤ t) is a matched-close for Dt

r iff for all i

s.t. 0 ≤ i ≤ n, ms−i = 〈_, close, dialogue(θ, γ, Λ)〉.
So a matched-close will terminate a dialogue Dt

r but only if Dt
r

has not already terminated and any sub-dialogues that are embed-
ded within Dt

r have already terminated.
Definition 13: Let Dt

r be a dialogue. Dt
r terminates at t iff the

following conditions hold:
1. mt is a matched-close for Dt

r ,
2. ¬∃Dt1

r s.t. Dt1
r terminates at t1 and Dt

r extends Dt1
r ,

3. ∀Dt1
r1

if Dt1
r1

is a sub-dialogue of Dt
r ,

then ∃Dt2
r1

s.t. Dt2
r1

terminates at t2
and either Dt2

r1
extends Dt1

r1
or Dt1

r1
extends Dt2

r1
,

and Dt2
r1

is a sub-dialogue of Dt
r ,

and (t − t2) ≤| Participants(Dt
r) | .

As it is possible to have multiple nested dialogues, it is some-
times useful to refer to the current dialogue, which is the innermost
dialogue that has not yet terminated.
Definition 14: Let Dt

r be a dialogue. The current dialogue is
returned by Current(Dt

r) s.t. Current(Dt
r) = Dt

r1
(1 ≤ r ≤ r1 ≤

t) where the following conditions hold:
1. mr1

= 〈x, open, γ〉 for some x ∈ I and some γ ∈ B,
2. ∀Dt1

r2
if Dt1

r2
is a sub-dialogue of Dt

r1
,

then ∃Dt2
r2

s.t. either Dt2
r2

extends Dt1
r2

or
Dt1

r2
extends Dt2

r2
,

and Dt2
r2

is a sub-dialogue of Dt
r1

and Dt2
r2

terminates at t2,
3. ¬∃Dt3

r1
s.t. Dt

r1
extends Dt3

r1
and Dt3

r1
terminates at t3.

The order in which the participants take their turn is determined
by the order the participants appear in the list given in the move
opening the dialogue. The only exception to this is if the last move
to be made was a matched-close terminating a sub-dialogue, in
which case it is the turn of the agent who opened said sub-dialogue.
Definition 15: Let Dt

r be a dialogue that has not terminated s.t.
Current(Dt

r) = Dt
r1

and Participants(Dt
r1

) = [x1, . . . , xn]. The
agent whose turn it is next to move is given by Turn(Dt

r) s.t.:
if Dt

r2
is a sub-dialogue of Dt

r that terminates at t, then Turn(Dt
r) =

Initiator(Dt
r2

);
else if Sender(mt) = xn, then Turn(Dt

r) = x1;
else if Sender(mt) = xi s.t. 1 ≤ i < n, then Turn(Dt

r) = xi+1.
We adopt the standard approach of associating a commitment

store with each agent participating in a dialogue. A commitment

store is a set of everything that the agent has asserted so far in the
course of the dialogue. Agents assert act-arguments during pAct
dialogues and we assume that they only assert b-arguments during
inquiry dialogues (although this will depend on the exact details
of the dialogue framework being used). As a commitment store
consists of things that the agent has already publicly declared, its
contents are visible to the other agents participating in the dialogue.
Definition 16: A commitment store associated with an agent x at
a timepoint t, denoted CSt

x, where x ∈ I and t ∈ N, is a set of
act-arguments and b-arguments.

An agent’s commitment store grows monotonically over time. If
an agent makes a move asserting a set of act-arguments, they are
all added to the agent’s commitment store. This is the only time the
commitment store is updated during a pAct dialogue.
Definition 17: Commitment store update. For a pAct dialogue
with participants {x1, . . . , xn}, for all x ∈ {x1, . . . , xn},

CS
t
x =

⎧⎨
⎩

∅ iff t = 0,
CSt−1

x ∪ Ψ iff mt = 〈x, assert, Ψ〉,
CSt−1

x otherwise.

A protocol is a function that returns the set of moves that are
legal for an agent to make at a particular point in a particular type
of dialogue. Here we give the specific protocol for pAct dialogues.
It takes the top-level dialogue that the agents are participating in
and the identifier of the agent whose turn it is to move, and returns
the set of legal moves that the agent may make.
Definition 18: The pAct protocol is a function Π : D × I �→
℘(M). If Dt

1 is a top-level dialogue s.t. Current(Dt
1) = Dt

r ,
Turn(Dt

r) = x, Participants(Dt
r) = Λ = [x1, . . . , xn], CSs =⋃

∀xi∈{x1,...,xn} CSt
xi

, Type(Dt
r) = pAct, Topic(Dt

r) = p and
1 ≤ t, then Π(Dt

1, x) is
Πo(D

t
1, x) ∪ Πa(D

t
1, x) ∪ {〈x, close, dialogue(pAct, p, Π)〉}

where
Πo(D

t
1, x) = {〈x, open, dialogue(inq, Δ, Λ)〉|

¬∃t′ s.t. 1 < t′ ≤ t

and mt′ = 〈x, open, dialogue(inq, Δ, Λ)〉}

Πa(D
t
1, x) = {〈x, assert, Ψ〉|

(1) Ψ �= ∅, and
(2) ∀A ∈ Ψ:

(i) A �∈ CSs, and
either (ii,a) Goal(A) = p, Action(A) = a,

and Polarity(A) = + and ¬∃A′ ∈ CSs s.t.
Action(A′) = a

or (ii,b) A = 〈qx, a, qy, v,−〉 and ∃A′ ∈ CSs s.t.
Action(A′) = a, Value(A) = v′(v′ �= v)
and Polarity(A′) = +,

or (ii,c) A = 〈qx, a, qy, v, +〉 and ∃A′ ∈ CSs s.t.
Action(A′) = a, Value(A) = v′ (v′ �= v)
and Polarity(A) = +.

else Π(Dt
1, x) = ∅.

The definition of Πo(D
t
1, x) ensures the participants can enter

into inquiry sub-dialogues to jointly construct all of the acceptable
b-arguments for and against each proposition p ∈ Δ, allowing the
initiating agent to decide what it believes the truth value of p to be.

The definition of Πa(D
t
1, x) ensures that an agent can assert any

act-argument relevant to the initiator’s proposal about how to act.
An agent may not assert the empty set (condition 1) nor assert ar-
guments that have already been asserted (2i). An agent may assert:
any a-argument for an action to achieve the goal (the topic of the
dialogue) as long as no a-argument for the same action has already
been asserted (2iia) (allowing arguments to be put forward when

Elizabeth Black, Katie Atkinson • Dialogues that Account for Diff erent Perspectives in Collaborative Argumentation

871

the commitment stores are empty and allowing any cq6-argument
for an action that has not yet been considered to be put forward);
any cq9-argument that challenges an a-argument that has already
been asserted for an action to achieve the goal (2iib); any cq10-
argument that challenges an a-argument that has already been as-
serted for an action to achieve the goal (2iic). We have only used
three CQs here, but could apply our approach to deal with the oth-
ers. Note, it is straightforward to check conformance with the pro-
tocol as it only refers to public elements of the dialogue.

We now give a specific strategy that allows an agent to select
exactly one legal move to make at each timepoint (at which it is its
turn) in a pAct dialogue. A strategy is personal to an agent (i.e. the
move it returns depends on the agent’s private beliefs). The strategy
states that if it is legal to make an open move that opens an inquiry
sub-dialogue whose topic is Φx (recall Φx is the set of propositions
that an agent x uses to model the world), then make any such a
move; else, if x can construct a set of act-arguments from its VATS
such that asserting them is a legal move, then assert the maximal
(with regards to set inclusion) such set; else make a close move.
Definition 19: The pAct strategy is a function Ω : D × I �→ M
s.t. Ω(Dt

1, x) is defined as follows (where Turn(Dt
1) = x).

If 〈x, open, dialogue(inq, Φx, Λ)〉 ∈ Π(Dt
1, x),

then Ω(Dt
1, x) = 〈x, open, dialogue(inq, Φx, Λ)〉

else,
if ∃Ψ ⊆ A(Sx) s.t. 〈x, assert, Ψ〉 ∈ Π(Dt

1, x)
and ¬∃Ψ′ ⊂ Ψ s.t. 〈x, assert, Ψ〉 ∈ Π(Dt

1, x),
then Ω(Dt

1, x) = 〈x, assert, Ψ〉;
else,
if ∃〈x, close, dialogue(pAct, p, Λ)〉 ∈ Π(Dt

1, x),
then Ω(Dt

1, x) = 〈x, close, dialogue(pAct, p, Λ)〉.
The strategy ensures that before asserting any act-arguments, an

agent will have entered into an inquiry sub-dialogue for each of
the propositions represented in its model of the world, meaning it
will be in a position to take into account all of the heterogeneous
knowledge held by the different specialist agents within the system
when deciding what its initial state is. After an agent has estab-
lished its initial state, it will assert the set of all act-arguments that
it can construct which are legal to assert. An agent only makes a
close move if it cannot make an open or assert move and so, as a
dialogue only terminates when each participating agent has made
a close move, the dialogue will not terminate until every relevant
act-argument that the agents can construct has been asserted.

3.1 Properties of the Framework
We can show that all pAct dialogues where the participants are

each following the pAct strategy terminate (as assumed earlier, in-
quiry sub-dialogues terminate; each agent x will only make an open
move opening an inquiry sub-dialogue with Φx as its topic and
agents cannot repeat these moves; and there are a finite number of
act-arguments that can be generated from the agents’ VATSs and
these cannot be asserted more than once).
Proposition 1: Let Dt

r be a pAct dialogue in which the participants
are following the pAct strategy. There exists a t1 (r < t ≤ t1) such
that Dt1

r terminates at t1 and Dt1
r extends Dt

r .
We are also able to show that for a terminated pAct dialogue

with topic p and participants that are each following the pAct strat-
egy: any act-argument that is asserted during the dialogue can be
constructed by at least one of the agents; if any of the participants
can construct an a-argument for an action to achieve the goal p,
then an a-argument for that action will have been asserted during
the dialogue (covering CQ6 ‘Are the alternative ways to achieve
the goal?’); and, for any a-argument A that gets asserted during the

dialogue, if any participant can construct a cq9-, or cq10-argument
A′ that challenges the a-argument A, then A′ will have been as-
serted during the dialogue. This follows from the definitions of the
pAct protocol and the pAct strategy, and the assumptions that we
make about the inquiry sub-dialogue.
Proposition 2: Let Dt

r be a pAct dialogue with participants Ag =
{x1, . . . , xn} who each follow the pAct strategy s.t. Dt

r terminates
at t and Topic(Dt

r) = p. Let CSs =
⋃

∀xi∈Ag CSt
xi

and Args =⋃
∀xi∈Ag

A(Sxi). Let us assume that as a result of reasoning with⋃
∀xi∈Ag Σxi , each participant xi ∈ Ag determines its initial state

to be q
xi

0 . The following conditions hold:
1. if there exists an act-argument A ∈ CSs, then A ∈ Args;
2. there exists an a-argument A ∈ CSs for an action a to achieve
goal p iff there exists an a-argument A′ ∈ Args for action a to
achieve goal p;
3. for any a-argument A ∈ CSs and any cq9- or cq10-argument
A′ that challenges A, A′ ∈ CSs iff A′ ∈ Args.

Our framework thus ensures that the initiator of a pAct dialogue
will, at the end of the dialogue, have at hand all arguments that
any participating agent can construct and that may be relevant to its
decision as to how to act. (Recall, we only consider CQs 6, 9 and 10
here, but this approach is applicable to all CQs.) In the next section
we give an example of a dialogue generated by our framework and
an example of a mechanism the initiator may use to evaluate the
relevant arguments produced from a pAct dialogue.

4. DIALOGUE EXAMPLE
Our example scenario concerns a system for reasoning about

the medical treatment of a patient (this scenario is for illustrative
purposes only, we do not make any claims about the validity of
the medical knowledge). It is adapted from [2], where the agents’
knowledge is only given informally and the mechanism the agents
use to share their knowledge is not defined. Note, following [7],
we use schematic rules in the example that contain variables (each
schematic rule stands for all ground instances of the rule). We as-
sume agents have knowledge of the basic mathematical operators.

4.1 Example Setting
In the scenario we consider three different specialist agents, each

with a single unique value of concern: the Treatment Agent (TA),
the Cost Agent (CA) and the Efficacy Agent (EA). The question
to be answered in the scenario concerns the particular drug that
should be prescribed to the patient to prevent blood clotting: as-
pirin, chlopidogrel or streptokinase. Prescribing these drugs gives
the basis for three actions that are recognised by all agents:

act1 : asp act2 : chlop act3 : strep

We now present each of the agents in turn by considering sub-
sets of the VATS that each maintains. We begin with the TA. This
agent’s sole concern, and hence its value, is the healthy recovery
of the patient. Reasoning about the effects of the different drugs
requires consideration of the following propositions:
pt
1: clotPrev; whether the patient’s blood has been prevented from

clotting
pt
2: aspCont; whether aspirin is contraindicated for the patient1

pt
3: gastRisk; whether the patient is at risk of gastric ulceration
Actions cause transitions between states in which the truth values

of the propositions may change (where 1 denotes true and 0 denotes
false). The transitions and their effects relevant to this example
1To keep the example small we consider this only in respect of
aspirin but the other drugs could be treated in a similar manner.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

872

1qt

t
110

111
q t

q
2

3010

act1

act2

v1+

v1−

act3 v1+

Figure 1: VATS for TA, Sta

1101 0101

1qc
2qc

act1

act3

act2

v2+

v2+

v2−

Figure 2: VATS for CA, Sca

are given in Fig. 1. The transitions also show when the value of
concern (v1) is promoted (+) or demoted (–).

As well as the information represented in its VATS about the ac-
tions that can be performed, the TA also has some knowledge about
the domain, in the form of defeasible rules, as follows (histGast

indicates the patient has a history of gastritis and acidRedTher

indicates the patient is receiving acid reducing therapy).
Σta = {histGast ∧ ¬acidRedTher → aspContra}

The VATS for the CA (the relevant part of which is shown in
Fig. 2) is different to that of the TA, reflecting its different area of
expertise, and it shows only propositions relevant for its reasoning
and how actions affect these in respect to its value ‘money’ (v2).
The propositions of concern to this agent are:
pc
1: onBudg; whether the budget for the patient is adhered to

pc
2: aspEcon; whether prescribing aspirin to the patient keeps within

budget
pc
3: chlopEcon; whether prescribing chlopidogrel to the patient

keeps within budget
pc
4: strepEcon; whether prescribing streptokinase to the patient

keeps within budget
As with the TA, the CA also contains some domain knowledge

(where spentBudg(X) indicates that amount of the budget that
has already been spent on the patient is X).
Σca = {spentBudg(X)∧ < (X, 750) → onBudg,

spentBudg(X)∧ < (1, 750 − X) → aspEcon,

spentBudg(X)∧ < (75, 750 − X) → chlopEcon,

spentBudg(X)∧ < (5, 750 − X) → strepEcon}

Finally, turning to the EA, whose concern is the treatment’s ef-
fectiveness (v3), the following propositions are relevant to this agent:
pe
1: over50; whether the patient is older than 50

pe
2: clotPrev; effect the drug has on prevention of blood clotting
From the transitions shown in Fig. 3 we can see that prescribing

streptokinase is the only action whose effectiveness is reduced for
a patient over the age of 50.

The EA also contains some domain knowledge (where age(X)
indicates that the patient’s age is X).

Σea = {age(X)∧ > (X, 50) → over50}

As well as the three agents we have described above, there is a
fourth agent who is the keeper of specific information relating to
the patient in question—the Patient Agent (PA). The PA is unique
to an individual patient, and can be seen as subsuming the role of
electronic patient record. It is the PA who has the initial goal that
triggers the dialogue: to prevent blood clotting (i.e. in the current

10 11

1 2qe qe
act1

act3

act2
v3−

v3+

v3+

Figure 3: VATS for EA, Sea

state clotPrev is false, the PA’s goal is to bring about a state in which
clotPrev is true). The PA does not have any knowledge about the
effect of actions and so initiates a pAct dialogue with the other
specialist agents in order to collect arguments about what action
could be taken in order to bring about the goal. Once the PA has
elicited all of the relevant arguments, it is able to use its personal
preference ordering over the values represented to decide which
action to take. The information held by the PA that is relevant to
this example is now given.
Σpa = {histGast,¬acidRedTher, spentBudg(695), age(65)}

In the next section we give the details of the dialogue generated.

4.2 Dialogue Example
We first give the act-arguments that are generated by the agents

from their VATSs during the dialogue.
A1:Given that we are in state qt

1, we should not give aspirin, which
will prevent the patient’s blood clotting and put the patient at risk
of gastric ulceration, and so demotes the patient’s healthy recovery
(cq9-argument, challenges A7).

〈qt
1, asp, qt

3, v1,−〉

A2:Given that we are in state qt
1, we should give chlopidogrel,

which will prevent the patient’s blood clotting, and so promotes
the patient’s healthy recovery (a-argument to achieve topic of dia-
logue).

〈qt
1, chlop, qt

2, clotPrev, v1, +〉

A3:Given that we are in state qt
1, we should give streptokinase,

which will prevent the patient’s blood clotting, and so promotes
the patient’s healthy recovery (a-argument to achieve topic of dia-
logue).

〈qt
1, strep, qt

2, clotPrev, v1, +〉

A4:Given that we are in state qc
1, we should give aspirin, which will

ensure we stay within budget for the patient, and so promotes the
hospital’s money (cq10-argument, challenges A7).

〈qc
1, asp, qc

1, v2, +〉

A5:Given that we are in state qc
1, we should not give chlopidogrel,

which will put us out of the budget for the patient, and so demotes
the hospital’s money (cq9-argument, challenges A2).

〈qc
1, chlop, qc

2, v2,−〉

A6: Given that we are in state qc
1, we should give streptokinase,

which will ensure we stay within budget for the patient, and so
promotes the hospital’s money (cq10-argument, challenges A3).

〈qc
1, strep, qc

1, v2, +〉

A7:Given that we are in state qe
1 , we should give aspirin, which will

prevent the patient’s blood clotting, and so promotes effectiveness
(cq6-argument, challenges A2 and A3).

〈qe
1, asp, qe

2, clotPrev, v3, +〉

A8:Given that we are in state qe
1 , we should give chlopidogrel,

which will prevent the patient’s blood clotting, and so promotes
effectiveness (cq10-argument, challenges A2).

〈qe
1, chlop, qe

2, v3, +〉

A9:Given that we are in state qe
1 , we should not give streptokinase,

which will not prevent the patient’s blood clotting, and so demotes
effectiveness (cq9-argument, challenges A3).

〈qe
1, strep, qe

1, v3,−〉

Elizabeth Black, Katie Atkinson • Dialogues that Account for Diff erent Perspectives in Collaborative Argumentation

873

We now give the b-arguments that it is possible to construct from
the union of all the participating agents’ beliefs.
A10 = 〈{histGast,¬acidRedTher,

histGast ∧ ¬acidRedTher → aspContr}, aspContr〉,
A11 = 〈{spentBudg(695), < (695, 750), spentBudg(695)∧

< (695, 750) → onBudg}, onBudg〉,
A12 = 〈{spentBudg(695), < (1, 55), spentBudg(695)∧

< (1, 55) → aspEcon}, aspEcon〉,
A13 = 〈{spentBudg(695), < (5, 55), spentBudg(695)∧

< (5, 75) → strepEcon}, strepEcon〉,
A14 = 〈{age(65), > (65, 50), age(65)∧

> (65, 50) → over50}, over50〉

Note that as none of these arguments are in conflict with one
another (i.e. there is no argument whose claim disputes the claim
or premise of another argument), each of these arguments is ac-
ceptable, given that we are considering the union of the participat-
ing agents’ beliefs. Hence, as a result of the inquiry sub-dialogues
in which these b-arguments are elicited, the TA, CA and EA find
themselves in initial states qt

1, qc
1 and qe

1 respectively.
The dialogue generated by the framework is given in Table 2,

where the first column gives the timepoint t, the second column
gives the move mt and the third shows how the various arguments
get added to the commitment stores over the course of the dialogue.

4.3 Argument Evaluation
At this stage the PA needs some way to evaluate the arguments

generated to decide which action to perform and why. Although our
framework does not prescribe which evaluation mechanism should
be used, we give an example that uses an abstract Argumentation
Framework (AF) [6] extended to represent values, a Value-Based
Argumentation Framework (VAF) [3]. An AF comprises a finite
set of arguments and a binary attack relation between pairs of ar-
guments. AFs can be modelled as directed graphs with arguments
as nodes and attacks as edges. A maximal set of arguments which
do not attack one another, but which between them attack every at-
tacker of a member of the set is a preferred extension (PE) and rep-
resents a maximal consistent position. As described in [3], VAFs
extend AFs by associating arguments with values that are promoted
through acceptance of the argument, recognising the agents’ differ-
ent interests. In a VAF attacks succeed only if the value associated
with the attacking argument is ranked, by the audience evaluating
the VAF, equal to or higher than the argument attacked, unlike in
AFs where attacks always succeed.

We now consider the VAF that the PA can construct and sup-
pose that the agent’s value order is Health (H) > Efficiency (E) >

Money (M) (v1 > v3 > v2). Although the VAF comprises all the
arguments generated in the example, those generated through the
use of CQ10 are treated differently to those generated from instan-
tiating the other CQs. CQ10 does not dispute the action that should
be performed, but questions the justification for the conclusion i.e.
why the action should be performed given the value it promotes.
So when CQ10 is posed against an argument instantiating the argu-
ment scheme, each of the two justifications for the action attack the
alternative. This is characterised as an attack since in some scenar-
ios (e.g. inquiry into negligence) it might be that the conclusion is
only supported by one of the justifications and not both, depending
on the value ordering of the agent evaluating the VAF. However,
both arguments generated still endorse the same conclusion, so we
need some way of recognising and representing this. We could
look to use a form of argument aggregation e.g. [8, 10], but there
are numerous subtleties involved in argument aggregation that have
yet to be resolved (for example, is a collection of very weak argu-
ments stronger than one very strong argument?). Instead, we use

the following mechanism.
Where two (or more) arguments providing different justifications

for the same conclusion exist in the PE, as generated by CQ10, the
arguments can be combined into a single argument, justified by
both the values they each promote. Where these values are distinct,
the value that is ranked most highly in the audience’s preference
ordering is the one that justifies the argument for that audience.

Applying the above procedure to our example means that A2 and
A8 can be combined. So, for the audience H > E > M (as in our
example), val(A2/8) = H. For a different audience, say with ranking
E > H > M, val(A2/8) = E. Since CQ10 was also used to generate
arguments A4 and A6, these can be treated analogously.

The full VAF for the arguments generated in the debate is given
below in Fig. 4, where each argument is labelled with the value(s)
that it either promotes or demotes.

A5
M

A9
E

A2/8
H, E

A3/6
H, M

A4/7
M, E

A1
H

Figure 4: VAF for the arguments in the example.
To decide which action to take, the VAF is evaluated in relation

to the PA’s value ordering, H > E > M. So, starting with the argu-
ments with no attackers we add A1, A5 and A9 to the PE. A1 de-
feats A4/7 given the value ordering so A2/8 and A3/6 are no longer
attacked by A4/7. A5 attacks but does not defeat A2/8 due to the
value ordering. Similarly, A9 attacks but does not defeat A3/62.
So, the PE for the VAF is the set {A1, A2/8, A3/6, A5, A9} from
which we need to decide upon a final argument for action. First we
consider the cq9-arguments that are in the PE and which conclude
that an action should not be performed, such that this action is not
endorsed by any other argument in the PE. The only such argument
is A1, which proposes that aspirin should not be prescribed, and
since no other argument in the PE proposes that it should be, A1
can be discounted.

We are now left with one argument each for chlop (A2/8) and
strep (A3/6). There are many different rationales for deciding be-
tween such acceptable arguments, and the one chosen may be ap-
plication dependant. For example, in safety-critical domains such
as this, it may be desirable to have a human user make this final
decision. Here, however, we consider the strength of the arguments
in the PE that challenge either A2/8 or A3/6: A5 and A9. We can
see that A5’s value is M, the lowest ranked value, and A9’s value is
E. So, an audience with the value ordering given can consider A5
to have the least strength, allowing A2/8’s conclusion, to prescribe
chlopidogrel, to be the least strongly challenged and return this ac-
tion as the one to execute. Alternatively, the PA could make further
consultations with other agents to check if there are any remedies
available to counter the demotion of values, as pointed out in A9
through the use of CQ9. We leave this example here.

5. CONCLUSION
In this paper we have presented the first formal dialogue frame-

work to allow agents to combine an inquiry dialogue over beliefs
with a persuasion dialogue over action. This allows agents with het-
erogeneous knowledge to each have an input into a decision about
2A9 would defeat A3/6 if val(A3/6) = M, which is not the case here
given the value ordering we have assumed for the PA.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

874

t mt CSs

1 〈pa, open, dialogue(pAct, clotPrev, Λ)〉
2 〈ta, open, dialogue(inq, {clotPrev, aspCont, gastRisk}, Λ)〉
...

... A10
2 + n1 〈_, close, dialogue(inq, {clotPrev, aspCont, gastRisk}, Λ)〉
3 + n1 〈ta, assert, {A2, A3}〉 A2, A3
4 + n1 〈ca, open, dialogue(inq, {onBudg, aspEcon, chlopEcon, strepEcon}, Λ)〉

...
... A11, A12, A13

4 + n1 + n2 〈_, close, dialogue(inq, {onBudg, aspEcon, chlopEcon, strepEcon}, Λ)〉
5 + n1 + n2 〈ca, assert, {A5, A6}〉 A5, A6
6 + n1 + n2 〈ea, open, dialogue(inq, {over50, clotPrev}, Λ)〉

...
... A14

6 + n1 + n2 + n3 〈_, close, dialogue(inq, {over50, clotPrev}, Λ)〉
7 + n1 + n2 + n3 〈ea, assert, {A7, A8, A9}〉 A7, A8, A9
8 + n1 + n2 + n3 〈pa, close, dialogue(pAct, clotPrev, Λ)〉
9 + n1 + n2 + n3 〈ta, assert, {A1}〉 A1
10 + n1 + n2 + n3 〈ca, assert, {A4}〉 A4
11 + n1 + n2 + n3 〈ea, close, dialogue(pAct, clotPrev, Λ)〉
12 + n1 + n2 + n3 〈pa, close, dialogue(pAct, clotPrev, Λ)〉
13 + n1 + n2 + n3 〈ta, close, dialogue(pAct, clotPrev, Λ)〉
14 + n1 + n2 + n3 〈ca, close, dialogue(pAct, clotPrev, Λ)〉

Table 2: pAct dialogue example: the PA is looking for the other specialist agents within the system (TA, CA, EA) to provide arguments
relative to its decision about how to act to achieve goal clotPrevent. Note, Λ = [pa, ta, ca, ea] and CSs =

⋃
x∈{pa,ta,ca,ea} CSt

x.

how to act to achieve a goal. The key features of our approach
are: the dialogue framework caters for both arguments about be-
lief as well as arguments about what to do; we have shown that
the framework guarantees that all knowledge potentially relevant
to both types of reasoning will be elicited in the course of the di-
alogue; our framework allows different areas of knowledge to be
specialised to particular agents that may then each lend their own
perspective on the problem; and, the distributed nature of the spe-
cialist knowledge significantly reduces each agents’ state space rep-
resentation of the scenario.

There are numerous avenues of future work for investigation. In
particular, we would like to formalise: the evaluation stage that
comes after an inquiry dialogue, where a decision must be made as
to which of a set of propositions to believe given a set of conflicting
arguments for and against those propositions; and, the evaluation
stage that comes after a pAct dialogue, where a decision must be
made as to which of a set of actions to carry out given a set of
conflicting arguments for and against those actions.

6. REFERENCES
[1] K. Atkinson and T. J. M. Bench-Capon. Practical reasoning

as presumptive argumentation using action based alternating
transition systems. Artificial Intelligence,
171(10–15):855–874, 2007.

[2] K. Atkinson, T. J. M. Bench-Capon, and S. Modgil.
Argumentation for decision support. In 17th Int. Conf. on
Database and Expert Systems Applications, LNCS 4080,
pages 822–831. Springer, 2006.

[3] T. J. M. Bench-Capon. Persuasion in practical argument
using value based argumentation frameworks. J. of Logic and
Computation, 13(3):429–48, 2003.

[4] E. Black and A. Hunter. An inquiry dialogue system.
Autonomous Agents and Multi-Agent Systems, DOI
10.1007/s10458-008-9074-5, 2009.

[5] F. Dignum and G. Vreeswijk. Towards a testbed for
multi-party dialogues. In AAMAS Int. Workshop on Agent

Communication Languages and Conversation Policies, pages
63–71, 2003.

[6] P. M. Dung. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence,
77:321–357, 1995.

[7] A. J. García and G. R. Simari. Defeasible logic programming
an argumentative approach. Theory and Practice of Logic
Prog., 4(1–2):95–138, 2004.

[8] P. Krause, S. Ambler, M. Elvang-Goransson, and J. Fox. A
logic of argumentation for reasoning under uncertainty.
Computational Intelligence, 11(1):113–131, 1995.

[9] P. McBurney and S. Parsons. Games that agents play: A
formal framework for dialogues between autonomous agents.
J. of Logic, Language and Information, 11(3):315–334,
2002.

[10] H. Prakken. A study of accrual of arguments, with
applications to evidential reasoning. In 10th Int. Conf. on
Artificial Intelligence and Law, pages 85–94. ACM Press,
2005.

[11] H. Prakken. Combining sceptical epistemic reasoning with
credulous practical reasoning. In Computational Models of
Argument, Proc. of COMMA-06, pages 311–322, 2006.

[12] I. Rahwan and L. Amgoud. An argumentation-based
approach for practical reasoning. In 5th Int. Joint Conf. on
Autonomous Agents and Multi-Agent Systems, pages
347–354. ACM Press, 2006.

[13] C. Reed. Dialogue frames in agent communications. In 3rd
Int. Conf. on Multi-Agent Systems, pages 246–253, 1998.

[14] D. N. Walton. Argumentation Schemes for Presumptive
Reasoning. Lawrence Erlbaum Associates, Mahwah, NJ,
USA, 1996.

[15] M. Wooldridge and W. van der Hoek. On obligations and
normative ability: Towards a logical analysis of the social
contract. J. of Applied Logic, 3:396–420, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

